

Living in the Phantom Gas Field: Physiological Responses of Sagebrush to Human Noise-Induced Changes in Arthropod Herbivory

Maria T. Pacioretty¹; Elizeth Cinto Mejia²; Dr. Jesse R. Barber²; Dr. Marie-Anne de Graaff²; Dr. Keith Reinhardt¹

Background

Birds and bats provide essential ecosystem services such as predation on plantdamaging herbivorous insects.

Increases in human noise-disturbance alter avian predator activity, creating the potential for "top-down" alterations in ecosystem services across multiple trophic levels (birds/bats \rightarrow insects \rightarrow plants \rightarrow soil).

The impacts of altered soundscapes from human noise has not been thoroughly investigated across multiple trophic levels, nor have the mechanisms underlying these ecosystem-scale changes.

Our study is one of the first to examine the effects of noise pollution across multiple trophic levels, using an experimental approach.

We broadcasted recordings of natural-gas-well compressor-station noise, and investigated how this noise resulted in changes in shrub herbivory, growth, and physiology, presumably because of noise-induced reductions in bird and bat predation on herbivorous insects.

Research Questions

- Will shrubs growing at study sites exposed to chronic human noise experience an increase in arthropod-herbivory, compared to shrubs growing in control ("quiet") areas?
- Are there differences between photosynthetic CO_2 assimilation, chlorophyll fluorescence (photosystem II efficiency), and water stress among control (noise-off) and treatment (noise-on) shrubs?

Study Site: National Birds of Prey Conservation Area, SW of Boise, ID.

12 sites: 6 treatment sites broadcasting recordings 24hrs/day; and 6 control sites with no broadcast noise.

Each site was located >0.5 Km away from any road to exclude potential vehicle disturbances and/or noise biases

A total of 72 shrubs (A. tridentata) were measured monthly for:

Herbivory -- stem growth, number of leaves, and herbivory damage (bite marks and total leaf damage).

Gas Exchange—photosynthesis, respiration, transpiration, and stomatal conductance were measured using a LiCOR LI-6400 portable photosynthesis machine

Water Status—pre-dawn water potentials were measured using a portable pressure chamber (PMS Instruments, Model PMS-1000).

Leaf Chlorophyll Fluorescence—photochemical efficiency was measured using a Walz Mini-Pam Photosynthesis Yield Analyzer.

¹Idaho State University, Pocatello, Idaho, USA; ²Boise State University, Boise, Idaho, USA

Fig. 1. Variation in photosynthesis from April through **Fig. 2**. Variation in photochemical efficiency (" $\Phi PSII$ ") September 2015. Points are means \pm SE. Noise did not from April through October 2015. Points are means have a strong effect on photosynthesis throughout the ±SE. Noise had a marginal effect on photosystem summer, however, there appears to be greater efficiency throughout the summer. Preliminary data photosynthesis in noise-on shrubs during the summer suggests that herbivory on treatment shrubs was 2x months than in control shrubs. Preliminary data greater than at control shrubs. suggests that herbivory on treatment shrubs was 2x greater than at control shrubs.

Discussion

During the late-summer months, when water wa effect on shrubs, with less significant effects \rightarrow Photosynthesis was greater in shrubs at noise at noise-on sites towards the end of the growin \rightarrow Photochemical efficiency was frequently less the growing season.

 \rightarrow Water potentials in shrubs at noise-on sites summer

 Taken collectively, our preliminary evidence sug herbivory and physiology, with potential cascad analysis underway to determine the statistical

Fig. 3. Variation in pre-dawn water potentials from April through October 2015. Points are means \pm SE. Noise did not have a strong effect on pressure potentials of shrubs throughout the year, however, there were occasionally significant differences later in the summer.

as more limiting, experimental noise had some s at other times during the growing season. e-on sites during mid-summer, but lower in shrubs	-	Proce ratios discri
ng season. in shrubs at noise-on sites, especially at the end of	-	Analy and t
were occasionally more negative, especially later in	-	Analy produ
ggests that human noise may affect shrub ding influences at ecosystem scales. Further and biological significance of our findings.	_	Regre from populo defer

Acknowledgments

Thank you to the Reinhardt Lab at ISU, and the Sensory Ecology Research Lab at BSU for all of their field support, equipment help, and wonderful advice. We thank the de Graaff lab at BSU for their assistance in the field, project advice, and leaf litter trap logistics. We have tremendous gratitude to Idaho EPSCoR MILES Program for financial support in awarding us an ISEED grant, without which this research would not have been possible.

