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Background Methods
Balancing climate change, sustainable growth, and human wellbeing 
requires understanding of how biophysical and socio-economic landscapes 
interact with each other (Griggs, et al. 2013).  Socio-ecological systems 
(SES) science attempts to do this by defining and characterizing the 
boundaries, interactions, and feed-back loops mediating different types of 
landscapes, whether engineered or naturally occurring.  Numerous 
conceptual frameworks exist to describe SES interactions and evaluate SES 
characteristics (Binder, et al. 2013, Carpenter, et al. 2008, Ostrom 2009), 
but questions remain of how to locate and characterize these SES domains.  

“Ecosystem services” describe a landscape’s ability to supply resources of 
value to humans and are a critical component of understanding social 
ecological systems. 

Studies mapping ecosystem service provisioning have increased 
exponentially since 1995 (Martinez-Harms, et al. 2012), but studies of the 
underlying social-ecological system boundaries are less abundant (Folke
2007) and detailed methodological information is missing from the 
majority of them (Martinez-Harms, et al. 2012). Principal Component 
Analysis (PCA) followed by clustering has been used to define eco-
economic regionalization of the Chinese Loess Plateau (Zang, et al. 2011), 
characterize biophysical and socio-economic functional units in Spain 
(Castro, et al. 2014, Martin-Lopez, et al. 2017), and define socio-ecological 
regionalization of urban sub-basins in Mexico (Cervantes-Jimenez, et al. 
2016). Despite these advances, approaches to compress multi-dimensional 
datasets into functional units remain subjective in their interpretations, as 
the variables, proxies, and techniques used to define different landscapes 
greatly influence the results. 

We report analyses to delineate SES landscapes in Idaho, USA predicated 
on the assumption that homogenous functional groups will have the 
same potential for providing ecosystem services.  This work presents a 
methodological improvement on traditional PCA followed by clustering 
techniques used by other researchers, and explicitly addresses the 
results and implications of using a non-hierarchical vs. hierarchical
approach to clustering SES variables.
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Data. Publically available, authoritative datasets were used.
● Biophysical Variables: elevation, slope, dew temperature, air 
temperature, vapor pressure deficit, precipitation, potential 
evapotranspiration, NDVI, land cover, lithology, soil order, biodiversity.
● Socio-Economic Variables: population density, percent Caucasian, 
median age, high school degrees, bachelor degrees, aggregate 
income/household, housing density, owner occupied homes, percent 
traditionally married with children families, percent divorced, traffic 
density, human modification index, industry occupations, surface 
management agency, land use.  

Nested PCA. Categorical variables were numericized and 
concatenated via an initial, nested PCA approach. Selected principal 
components from this step were included with the continuous data for 
a second PCA. 
● Biophysical Variables: biodiversity PC1-3, 80.6 % (originally 6 
categories), landcover PC1-2, 89 % (originally 9 categories)
soil order PC1-3, 87.1% (originally 7 categories), lithology PC1-2, 
80.8% (originally 4 categories).
● Socio-Economic Variables: industry occupation PC1-7, 70.5 % 
(originally 17 categories), surface management agency PC1-2, 87.3% 
(originally 9 categories), land use PC1, 93.7% (originally 6 categories).

Modified PCA. Modified PCA was performed with XY spatial 
coordinates of analysis grid centroids included in the dataset. The 
coordinates were then omitted for score calculations, thereby holding 
spatial location constant while not explicitly including them in 
subsequent clustering analysis.

Clustering & Validation. Both kmeans (Lloyd 1957) and 
Agglomerative Hierarchical Clustering (AHC) (Rokach, et al. 2005) are 
standard, broadly used approaches to clustering landscape variables, 
and have specifically been used to cluster PCA results of landscape 
variables. In order to explore how different clustering approaches 
might affect delineation outcomes we used both techniques with the 
intention of comparing and contrasting findings. Choosing the optimal 
number of clusters generated by kmeans and AHC was done using two 
validations indices, the silhouette width and the gap statistic, 
respectively.

Both clustering techniques generated intuitive and robust 
maps for subsequent SES studies in Idaho, especially those 
pertaining to ecosystem service supply and sustainability.  
The hierarchical approach, AHC, generated a higher number 
of likely clusters for both the biophysical and socio-economic 
landscapes, providing finer resolution than did the non-
hierarchical method, kmeans.  We intend to provide all map 
sets generated by these analyses for clusters 3-10; however, 
percent agreement between maps for a given number of 
clusters varied from 47% to 81%, so we recommend 
exploring additional validation criteria when selecting map 
sets not presented here.  Preliminary spearman correlations 
between the biophysical and socio-economic datasets (right) 
show the strongest coupling along the agricultural belt and 
developed areas, indicating an opportunity to explore this 
relationship and how the strength of the association has 
changed over time at different spatial and temporal scales. 
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