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Integrated Modeling of Social and Biophysical Processes
Influencing Water Availability in Southwest Idaho: Update on 

Irrigation and Climate Change Integration

Connections, Integration and Synergies

Treasure Valley Project, Alternative Futures

Treasure Valley Progress Update 1: Irrigation

Modeling Framework

• Southwest Idaho: semi-arid, hot-dry 
summer, relatively wet winter

• Most populous area in Idaho

• Rapidly growing population

• Shifting urban-agriculture interface

• Complex water management

• Irrigation dominated agricultural 
activities & human influenced 
hydrological processes

• Many diverse stakeholders

• What will the Treasure Valley land 
use look like?

• How will the water availability 
change?

• How will human decision making 
influence the trajectory of change? 

Research Questions

Fig. 5. Water right loop showing how irrigated water is allocated based on available water from the 
stream, water demand at each integrated decision unit (IDU) and water rights information (e.g. Water 

rights priority dates, water use code). Currently, groundwater from wells are considered to be unlimited. 
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Fig .4. . Local water rights data (PODs and POUs) from Idaho 
Department of Water Resources (Irrigation water use only).

• Local water rights dataset are 
integrated into a semi-
conceptual hydrologic model

• 4,838 Points of Diversions 
(PODs) and 3,859 Places of 
Use (POUs) are appropriated 
for irrigation use

• 78% of the PODs use 
groundwater as water source, 
and only 22% use surface 
water as water source

• Surface water is the main 
water source on the diverted 
water volume.

• Prior Appropriation 
Doctrine (first in time is 
first in right)

• Flow time step: available 
water and IDU water 
demand

• Calculation unit: 
Hydrologic response unit 
(HRU);

• Surface water: stream 
reach

• Groundwater: assumed 
to be unlimited

• Irrigation: allocated in 
water right loop

• Climate: Using historical weather 
observations and future downscaled 
GCM projections to drive Weather 
Generator 

• Hydrology: Semi-conceptual HBV 
model

• Irrigation: Following local water 
rights constraints

• Population and Land Use: Dynamic 
regression models.
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Progress Update 2: Climate Change
Data 
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• Irrigation simulated within the constraints of
water rights, water demand, and available
water

• Model captures annual and monthly irrigation
water use patterns (Fig. 6. A and B)

• Model reveals spatial irrigation water use
patterns (Fig. 6. C)

• Model calibrated and partially validated
based on historical discharge (Fig. 6. D)

D

Fig. 1. Location of the Treasure Valley area and the included 
major cities, major highways, streams and the New York Canal.

Fig. 2. Conceptual modeling framework for projections of future land use and water availability scenarios. 
Light green boxes represents the work that is mostly tackled. Green boxes represents the on-going work.

Fig. 3. The work is focusing on future scenarios of the Treasure Valley. A team of scientists, engineers 
and stakeholders are contributing to the integration of knowledge.

Fig. 6. Annual allocated and unsatisfied irrigation water (Panel A); Monthly allocated and unsatisfied 
irrigation water (Panel B); Spatial explicit map of water allocation, taking year 2013 as an example 

(Panel C); Observed New York Canal Discharge and the simulation diversion rate (Panel D).

• Three scenarios: Historical trend, and 2 
future Representative Concentration 
Pathways (RCP 4.5 and RCP 8.5)

• 11 downscaled General Circulation 
Models (GCMs) in each future scenario

• 12 climate variables are analyzed and 
summarized to generate representative 
monthly ranges of each variable

• Latin Hypercube method to randomly 
sample 10 sets of monthly climate 
statistics within representative ranges of 
the variables

• Statistical weather generator (WXGN) to 
generate 10 ensembles of daily climate 
for each climate set under each RCP

Fig. 7. Workflow of climate change scenarios

Fig. 8. Boxplot of monthly climate variables over 11 GCMs (taking maximum temperature (Tmax), 
standard deviation of maximum temperature (Sdmx), precipitation, standard deviation of 

precipitation (Sdrf) as examples). Both higher temperature and higher precipitation rates in RCP 8.5. 
Precipitation has larger variance  between GCMs than temperature. The large variance indicates that 

an ensemble of climate realizations are necessary to capture the variations of  climate change.

Han, B. et al. Spatially distributed simulation of intensively managed hydrologic systems: coupling 
biophysical and social systems to evaluate potential water scarcity (manuscript). 
Han, B. et al. Integrated Modeling of Social and Biophysical Processes Influencing Water Availability in 
Southwest Idaho: Preliminary Results. Agricultural Water Management (in review) .

• Run the model for the ensemble of
scenarios of climate change, and
project the water use and water
scarcity patterns by 2100

• Integrate the crop choice model
results into Envision

• Integrate urban water use in the
model

Broader Impacts
• Advances the science by building a

framework for water use projections
that is applicable to semi-arid
regions with limited water source

• The modeling outcome can inform stakeholders with better decision-making.
Outcomes

Fig. 9. An example showing fully integrated 
population growth, land use change, climate 

change, evapotranspiration and irrigation rates 
in the Treasure Valley.

Future Work
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