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■ INTRODUCTION
Data availability in environmental sciences is expanding at
a rapid pace. From the constant stream of high-resolution
satellite images to the local efforts of citizen scientists, there is an
increasing need to process the growing stream of heteroge-
neous data and turn it into useful information for decision-
making. Environmental models, ranging from simple rainfall−
runoff relations to complex climate models, can be very useful
tools to process data, identify patterns, and help predict the
potential impact of management scenarios. But the complexity
of most environmental models typically confines them to
scientific laboratories and academic computer clusters, where
they are harnessed by researchers who understand the algo-
rithms, assumptions, simplifications, and potential errors of
these models. As a result, decision-makers often have high and
unrealistic expectations regarding scientific knowledge and
environmental models. The risk exists that they will see them
as clear-cut cases for particular policies,1 or contrarily, they
may lack confidence in models and results that they cannot
reproduce themselves. The integration of information provided
by environmental models into policy formulation is therefore
quite a challenge. In their efforts, scientists and decision-makers
may be helped or criticized by third parties of citizen scien-
tists collecting local data2 and challenging model results and
management decisions.
Recent technological innovations in networking and com-

puting (among which those that underpin the interactive
Web 2.0) may bring a new generation of interactive models
plugged into virtual environments closer to the end-user. They
are the driver of major funding initiatives such as the UK’s
Virtual Observatory program, and the U.S. National Science
Foundation’s Earth Cube. Even though the intricacies of code
development and data assimilation themselves may still be
hidden in laboratories and supercomputer centers, various in-
terfaces may allow end-users to interact with them more

directly, requesting particular scenarios and tailored simula-
tions. Such “do-it-yourself” simulation has the potential to turn
the typical top-down flow of information from scientists to
users into a much more direct, interactive approach. It opens
perspectives to speed up the dissemination of environmental
information to a larger community of users, to harvest feedback,
and to widen the opportunity to evaluate simulations and
predictions from different perspectives. However, this evolution
comes with the challenge of communicating modeled results in
such a way that they can be interpreted correctly and are not
used in an inappropriate context.

■ INCREASING NEEDS FOR ENVIRONMENTAL DATA
PROCESSING AND SIMULATION

For the indigenous communities of the Pacaya-Samira National
Reserve in the Peruvian Amazon, turtle egg harvesting is a suc-
cessful survival strategy. The practice keeps the natural animal
population numbers up and provides a necessary source of food
and income. However, the success of the activity is dependent
on information on the variability in the river level, which may
flood nesting beaches at crucial times. In the Yasuni ́ National
Park in the Ecuadorian Amazon, bush meat hunting regions are
threatened by encroaching deforestation. Further upstream, in
Andean highlands of Ecuador and Peru, the availability and
quality of irrigation water depends strongly on upland land
management, as well as the reliability of precipitation and
glacier melt, which future climate change may affect.3

In these areas and in many others worldwide, a sustainable
management of the natural resources is crucial for local socio-
economic development. The given examples face very different
environmental problems. But in all of them, data and resources
tend to be scarce compared to the complexity of the issues
faced. It is therefore essential that local managers have optimal
access to existing data and simulation methods to design man-
agement strategies, and optimize ecosystem management and
human development.
Many developed countries also struggle to manage ecosystem

resources in a context of accelerating environmental change.
Data availability may be less of an issue here, but the data come
in many different forms and formats, and are collected and
stored by a plethora of different institutes and entities. The in-
creasing stress on environmental processes requires that man-
agement strategies take into account the complexity of strongly
interconnected environmental and socio-economic systems.
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Resolving the interactions between different processes in inte-
grated models is a convenient approach to understand the
potential impact of management and policy decisions. The
Virtual Observatory program of the UK Natural Environment
Research is one of several attempts to create a common plat-
form for environmental data, models, and decision support
systems. In the U.S., the recently announced Earth Cube
initiative of the National Science Foundation has similar
aims, as has the Global Earth Observation System of System
(GEOSS). They all aim at providing environmental simulations
and predictions that result from advanced integration of climatic,
hydrological, ecological, social and other data to inform
management decisions.
However, not only in large-scale virtual observatories, but

also in small scale citizen science,4 there is a growing need for
more integration in sharing and processing of data and informa-
tion. Although the accuracy of a single sensor or amateur
observation is often less than that of a more expensive alterna-
tive, the ability to employ them in large quantities may provide
valuable information, for instance where spatial patterns are
highly variable or of particular importance. Such data collection
is often driven by citizens or environmental managers with a
local interest. It is therefore paramount that any scientific
knowledge generated from these data is fed back to the data
collectors, either to support local ecosystem management, or as
an education process to increase the lifespan of a community-
based monitoring system.
In the above-mentioned example of improving irrigation

in the Andes, one of the main issues is the lack of hydro-
meteorological data. As in many other regions the number of
hydrometeorological stations in the region has been in gradual
decline since in the 1980s.5 Existing monitoring networks are
concentrated in valleys where most of the economic activity
happens. This is of little help to smallholder farmers in the
mountain headwaters, such as those of the Pacaipampa region
in northern Peru. With the help of local organizations they try
to improve agricultural practices to make their farming on steep
slopes more sustainable, and to reconcile human activities with
the conservation of valuable wetland ecosystems.6 Recognizing
that basic information on precipitation and streamflow is essen-
tial to a better understanding of the local hydrology, the farmers
of Pacaipampa have installed electronic rain and streamflow
gauges. Data are collected by a local organization and processed
for basic visualization.7

The results of the project are positively received by the local
community. It allows them to identify headwater catchments
with a strong water regulation, which should be left undisturbed
as water supply areas. But the potential of such projects is much
larger. Although raw data are useful for understanding local pro-
cesses such as runoff generation dynamics and water yield,
water managers are more interested in anticipating the potential
impact of management scenarios, such as reforestation, exclu-
sion of livestock, and restoration of wetlands. Typically, these
impacts are predicted using physically based hydrological models.
However, implementing environmental models for complex

regions such as the tropical Andes is challenging. Because
models are complex, scientists are needed to develop and run
them. To do so, scientists often need local data and insights.
At the other end, users may benefit from better interaction
with model developers to understand the model’s abilities and
deficiencies. Therefore, more interaction and exchange among
data collectors, model developers, and end-users/decision
makers is needed. This may lead to a rich two-way learning

process, which may yield new evaluation strategies and quicker
model improvement. Applying models that continuously incor-
porate new data and knowledge within an adaptive manage-
ment cycle can provide better outcomes in the context of un-
certainty8 and offer the opportunity to incorporate citizen
scientists’ feedback. Such a process is now becoming easier
through web-enabled data processing.

■ UBIQUITOUS SENSING, SOFTWARE INTEGRATION,
AND THE ROLE OF WEB SERVICES

Driven by technological developments, environmental sensors
are becoming smaller, cheaper, and increasingly automated.
They can be employed in pervasive sensor networks9 and
connected to the Internet where they provide constant streams
of data.10 Similarly, environment agencies worldwide are start-
ing to put historical and recent data online, helped by emerging
standards for data formatting and access.11 The need to process
these data efficiently has driven the development of workflow
management systems to facilitate data processing.12 Increas-
ingly, these tools are web-enabled. Not only does this facilitate
their deployment, avoiding the need to install software on a
particular machine, it has several other advantages. Processing-
or memory-intensive parts of the analysis can be delegated to
commercial cloud computing facilities. This speeds up pro-
cessing, especially for tasks that involve large, parallel calcula-
tions, as is typical for uncertainty analyses (e.g., Markov Chain
Monte Carlo methods). Another advantage is that model
components can be hosted online. For instance, rather than
having to download and install a rainfall−runoff model, it may
be made available as a web service by a commercial company or
research group, allowing users to send off the input data and get
the output data in return.13

Technologies for the deployment of model components on-
line are currently under development. For instance, the Open
Geospatial Consortium’s (OGC) Web Processing Service14

provides rules for standardizing how inputs and outputs (req-
uests and responses) for geospatial processing services need to
be formulated. The standard also defines how a client can
request the execution of a process, and how the output from
the process is handled. Similarly, data models are being defined
to facilitate the unambiguous exchange of information between
different models, as well as metadata including uncertainties.
Notable examples are the Observations Data Model developed
by the Consortium of Universities for the Advancement of
Hydrological Sciences Inc. (CUAHSI15), now being adopted as
part of the suite of standards of OGC, or OGC’s own Observa-
tions and Measurements.16

These developments provide far-reaching opportunities
for decision-support systems. The availability of online
databases and models as web services allows for their inclu-
sion not only in professional workflows, but also in inter-
active tools for data querying and simulation aimed at
decision-making.13 The integration of sensors, models,
visualization, and other tools in a common cyber-infra-
structure is sometimes referred to as the construction of a
Virtual Observatory (Figure 1). An example in the form of a
web-based early warning system for flooding has been
developed for the Demer river basin in Belgium,17 while
several others are part of the GEOSS system.
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■ TOWARD INTERACTIVE AND OPEN
ENVIRONMENTAL MANAGEMENT SYSTEMS

The farmers in Pacaipampa in the highlands of Peru are cur-
rently benefiting from an increased understanding of the water
cycle of the local ecosystems, but their insight in the potential
hydrological impacts of land-use practices is still limited. For
this, more advanced simulation is needed. For instance, in com-
bination with data on land-cover and runoff generation pro-
cesses, the precipitation records can be used as input for a
hydrological model to simulate the impact of land-use changes,
for instance reforestation, on water quality and quantity
(Figure 2). Not only would this help to optimize local land-use

management, it will also provide valuable information on the
provision of ecosystem services between the uplands and the
lowlands. Indeed, the effect of land-use changes extends beyond
the local interest. Water resources from the wetter highlands
are a crucial ecosystem service for the dry, coastal lowlands
with extensive irrigation systems.18 Irrigators may be interested
in systems that combine the observations with the outputs
of global weather models to provide better weather forecasts.

Virtual observatories can help address the scaling issue in envi-
ronmental science and policy, through linking local level data
and knowledge with global data into environmental models.
Finally, the data have a wider scientific and policy-making value,
for instance to understand poorly known ENSO driven preci-
pitation anomalies in northern Peru. Therefore, if these data
become publicly available through a virtual observatory, they
can contribute to the development of new knowledge, as well as
a more transparent and effective decision-making and policy
assessment.
The development of a virtual environment where data and

models are integrated through web services is critical for setting
up virtual observatories. Web portals can be used to allow local
practitioners to upload raw archives of sensor data (if it is im-
possible to connect those sensors directly with the Internet).
Automatic algorithms may provide basic processing, quality
control, interpolation, and visualization.10 Simulations on how
data decrease the uncertainty of model projections may inform
decisions about future data collection, and their technical
characteristics (e.g., frequency and density of measurements).
Especially when financial, technical, and scientific resources
are scarce, there is a risk that such decisions are taken ad-hoc.
Depending on the nature of the issue and the available model
simulations, decision makers can use the resulting information
for real-time operational decisions-making (e.g., data on water
levels for flood management), medium-term management deci-
sions (e.g., hydrological model predictions for land use change
decisions), or for long-term strategic investment decisions (e.g.,
climate projections for infrastructural decisions).
Web technologies allow many new forms and levels of inter-

actions between models and human actors. The science of
visualizing data, including uncertain predictions, has a long
history.19,20 Existing methods can be readily applied in web
environments, with the added benefit of instantaneity and inter-
action. The availability of vast data and processing power
over the Internet has led to “a golden age of infographics, (i.e.
graphical representations of data intended for a nontechnical
audience)”.20 An advanced example of interactive infographics
is the UK Government’s my205021 simulator, which allows
users to interact with carbon emission data and create their own
scenarios for the future. It provides an appealing visualization
of complex data, many of which are generated by models of
some sort.
Although my2050 and similar sites provide a more engaging

user experience than static Web sites or print media, the type of
information exchange is still mostly from the Web site to the
user. However, information collection from end-users or third
party actors is becoming more common. Many applications
exist of massive analysis of the data that are uploaded daily to
the public domain. For instance, applications are known of
filtering twitter feeds for a variety of purposes, including predic-
tions of the stock market22 and spotting of animal species.23

From there it should only be a small step toward more targeted
forms of data harvesting. For instance, pictures taken by GPS-
enabled smartphones are automatically tagged with the
geographic location and a timestamp. Combined with suitable
image processing software, they can provide evidence of a large
variety of environmental observations such as the extent of
a predicted flood. User input may also be enabled directly
through editable content such as maps. Google Map Maker24 is
one of many examples.
Engaging local knowledge within the data collection and

modeling process is also critical to ensure benefits for the

Figure 2. Prototype of an online decision-support system driven by a
hydrological model, allowing simulation of the impact of land-cover
changes on the hydrological response.

Figure 1. Schematic of a virtual observatory of interconnected web-
services providing interactive simulation functions for decision-support.

Environmental Science & Technology Feature

dx.doi.org/10.1021/es2031278 | Environ. Sci. Technol. 2012, 46, 1971−19761973



local population. To do so, participatory methodologies offer
an opportunity to both gather information and validate models
outputs. Virtual observatories may then become tools to inte-
grating formal-scientific knowledge with local-context specific
observations. Many types of social media are emerging that can
enhance the interaction between both information streams. For
instance, linking online simulation systems to voting systems as
used in Facebook and Google+ allow users to express opinions
about the quality of predictions, or the usefulness of these pre-
dictions for their decisions. Uploaded photos and other evi-
dence may be linked to specific news-items or applications
for easy identification. As another example, the use of specific
keywords known as hashtags has gained popularity on twitter as
a way to “classify” messages and facilitate searching.
The application of these technologies can be seen as an

extension of the experiment in radical scientific method of Lane
et al.25 In this study, scientists met in person with members of
the public to coproduce knowledge about flooding of Pickering,
a small market town North Yorkshire, UK. Shared conceptual
models, e.g., about peak attenuation and storm volume, play
an important role in such joint knowledge generation. Although
direct, face-to-face meetings are probably the fastest way of
coproducing knowledge, they are time-consuming and resource-
intensive and hence they may be complemented by online
technologies.
Implementing environmental models in a web context may

thus bridge the gap between high-level environmental data
analysis and the general public. Environmental models are per-
fectly suited to function in a simulation environment, allowing
for “what if” scenario testing and “do-it-yourself” environmental
decision-making, through web interfaces and even applications
on mobile phones. Especially in areas with low Internet pene-
tration such as developing countries, the latter hold a strong
potential for information dissemination.
All of this holds a promise of greater transparency and in-

clusive participation of citizens in environmental data collec-
tion, modeling, research, and decision-making. Where conflict-
ing recommendations in environmental policy discussions
result from using different data sets and/or model implemen-
tations in a nontransparent manner, virtual observatories may
help to avoid or more easily address these controversies.

■ POTENTIAL PITFALLS AND CHALLENGES
It is an aphorism that all models are wrong, though some may
be useful. Of course, uncertain environmental model results are
already heavily used in certain decision-making contexts, with
the climate change debate being a prominent example.26,27 But
opening up the access to new models for simulation purposes
to a broader user community will present new challenges with
regard to both characterizing uncertainties and to communicat-
ing the meaning of simulations and the impact of assumptions
and errors.
Especially when variable quality and informal data are used,

input errors in those data will propagate and may be amplified
by errors and simplifications in the model structure. It will
therefore be essential to keep track of these errors when data
and simulations flow continuously among data sets, model
components, and repositories across the web.
On a more fundamental level, a lot of questions remain to be

solved about the way that model input uncertainties interact
with necessarily simplified and incomplete model structures.
Uncertainties in measurements have been subject to a long his-
tory of research, and are typically well represented by standard

statistical theory. However, uncertainties and errors in model
structures may be epistemic rather than aleatory in nature
and therefore much more difficult to fit in a classic statistical
framework.28

One challenge is of a technical nature. Interconnecting
models and data sets into complex simulation systems will also
allow errors in the data and the simulations to propagate.
Quantifying these errors and tracking their propagation is es-
sential. This is especially true when “new” data sources such
as citizen scientist’s measurements and expert knowledge are
linked into models. The development of markup languages
for data exchange and their associated data models pays
due attention to the need for metadata including uncertain-
ties (e.g., WaterML, CUAHSI, UncertWEB15,29−31), but the
implementation of these standards is still in its early stages.
Many data sources that are currently available in the public do-
main have no straightforward error model. In the case of citizen
scientists or volunteer data collection, the collectors may not
have enough knowledge about the nature of the data to pro-
perly characterize their uncertainties. Either automated or expert-
assisted quality control systems will be needed. Such support
could take the form of an online data input and storage applica-
tion that facilitates the collection of metadata (e.g., a GPS-
enabled mobile phone application that automatically stores the
location of a data point), or runs a set of automated quality
control routines before flagging any potential anomalies to
experts. Many data sets may need a model in itself to convert
the raw piece of information into useful data, as is already the
case for most satellite measurements (e.g., groundwater levels
derived from the GRACE satellite32).
The use of qualitative data in environmental modeling is

yet more challenging. In hydrological modeling, a legacy of re-
search exists on the use of nonformal performance measures
based on expert opinions. This approach is pioneered by the
GLUE methodology33 and explored widely thereafter, for
instance in the use of fuzzy logic34 and soft data for multicriteria
model calibration.35 However, citizen science and social net-
working may increase dramatically the amount of soft data
available for assimilation in models. Especially for the local
refinement of model strategies (as in the idea of models of
everywhere36), expert opinions about model deficiencies and
pathways for model improvement may be of particular
importance. New methods will have to be developed to collect
and make optimal use of this information.
Once the major sources of model uncertainties are quanti-

fied, communicating model performance and the impact of
simplifications and assumptions presents another challenge.
Users will want to evaluate whether models are fit for (their)
purpose using a wide range and potentially idiosyncratic set
of criteria.37 It is not uncommon that models fail to pro-
duce useful data for policy comparison or good experimental
management plans.37,38 Especially in decision-making processes
where budgets are limited, interests need to be balanced. Where
societal perspectives on environmental issues vary widely,
uncertainties can easily be used and misused to promote or
challenge particular policies.
In this context the communication of the uncertainties, limi-

tations, and assumptions of models is of paramount impor-
tance. This is perhaps most visible in the current climate change
debate, where the uncertainties and deficiencies of climate
models and data are heavily scritinized by different actors. For
instance, in the case of the climate skeptic network Surface
Stations, volunteers surveyed U.S. temperature station sites in
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an attempt to identify errors in commonly used climate data
sets.39 As a result, a lot of attention has been paid to developing
a language and visualization techniques for uncertainties. (For
an overview see e.g., 20 and 27) Similarly, the meteorological
community has come a long way in quantifying and communi-
cating uncertain weather forecasts to the general public.
If environmental data and models are more open and easier

to access, it can therefore be expected that they will become
increasingly subject to scrutinization and debate too. It is there-
fore essential that criteria be defined to assess the usefulness of
model predictions for specific applications, as well as ways to
communicate them. This contrasts with the current tendency to
assess models on a limited set of performance measures, as is
common for instance in hydrological models.40,41 Rather, the
discipline of assessing the value of uncertain model predictions
in a decision-making context will need to be expanded,42 so that
it can contribute to the capacity of decision-makers to make
convincing cases for their decisions without hiding the uncer-
tainties, and to the capacity of citizens to accept the inevitable
uncertainties surrounding any policy decision.
Lastly, many environmental models themselves are currently

not designed to work in a flexible and adaptive web environ-
ment, where the amount of data may be variable and the data
themselves may come in various flavors of quality, resolution,
and spatial support. For instance, many hydrological models are
monolithic implementations of computer code43 with specific
input data that may not be available under all conditions. If
models are to be applied in a demand-driven environment, they
will need to deal with a large variety of processes and data.
Flexible model structures that adapt to data availability will be
needed, but have only recently been explored.36,44

The scientific issues of web-enabling models can only be
solved when underpinned by adequate technical developments.
Standardization of web protocols for data exchange and model
coupling are under development, but run the risk of poor
adoption, proliferation of standards, and resistance from inte-
rest groups. There is an increasing awareness and interest among
data providers to share data in the cloud. Especially govern-
mental funding agencies such as the U.S. National Science
Foundation and the UK Research Councils are encouraging or
even requiring research results to be made available in the
public domain, and provide the necessary facilities (e.g., the UK
Centre for Environmental Data Archival). However, other data
providers may rely on the commercialization of generated data
for their business, while some data are restricted under govern-
ment regulations. In these situations, authentication technolo-
gies could enable restricted access, rather than having to disable
access totally. For instance, the future CMIP5 repository of the
British Atmospheric Data Centre is implementing an access
control architecture for the OPeNDAP services standard.45

OPeNDAP and similar access protocols may also eliminate cur-
rent problems with proliferation of file formats, such as GRIB
and NetCDF. Even though the formats are documented, their
loose specification is often criticized as difficult to read and
interpret.
We conclude that the unprecedented availability and access

to data through the Internet poses significant challenges to
environmental scientists. Novel ways will have to be found to
manage and analyze these data and to generate information
relevant for environmental management. New web technolo-
gies provide exciting opportunities, both for processing infor-
mation and for communicating to the end-user. Environmental
models, being primary tools to extract information from raw data,

will play a leading role in this process. Many challenges will
need to be addressed of how to design models, link them into
networks, and let people interact with them. However, address-
ing these has the potential to greatly increase the value of envi-
ronmental modeling to manage natural resources and optimize
their benefits for local livelihoods.
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